Abstract

Systems that incorporate High Voltage Rails (~ 800 V) are typically controlled by circuitry that utilizes much lower voltages. Microprocessors, communication protocols, and sensors require a variety of voltages. A common approach to generate these voltages is with the flyback topology. In this design, a 1.7kV JFET in the cascode configuration is used as the main power switch in a flyback utility power supply. The JFET not only provides good efficiency, but also simplifies the startup circuitry by doubling as the startup circuit’s high voltage pass element.

1 Flyback Converter

Figure 1 is the top level schematic of the utility supply that is implemented in this application note. A wide Input voltage of 200 V to 1000 V generates regulated output voltages of +12, -12 and +5V.

In this implementation, the +5V and the -12V outputs are low current (< 1 Amp), and have the option of a SOT-223 LDO post regulator. Unless noted, an LDO is utilized on the +5V output, and the -12V is regulated per the +12V output in all efficiency measurements.

The +12V output is directly regulated through a TL-431/Opto-coupler to a UCC38C41 PWM controller to maintain tight regulation, while providing good primary to secondary isolation.

The printed circuit board was laid out to accommodate a wide range of loads, so modifications can be made to meet different specifications.

2 Power Switch

The power switch comprises an 800 mOhm, 1.7 kV SiC JFET (UJN171K0K) paired with a 60 mOhm 30 V Silicon MOSFET in a cascode configuration. The low voltage MOSFET can be driven with a standard drive (0V to 10V), so one can take advantage of silicon carbide without having to provide negative gate drive, or excessive voltage (>18V) to switch the device, as is the case with Silicon Carbide MOSFETs.

3 Startup Circuit

One of the unique advantages of the cascode is its simplification of the converter’s startup. In a typical high voltage startup circuit, a second high voltage device is needed to provide +12V to power the controller along with bias resistors that continue to dissipate power after the converter is operating. Using a high voltage JFET in cascode, that issue is solved. With the cascode in the off state at startup, the MOSFET drain voltage will steady...
state at approximately the inverse of the JFET threshold voltage. This voltage can be used to power the converter’s control circuitry until the auxiliary winding is regulating. In Figure 1, a resistor and diode are used to connect the MOSFET voltage to the control circuitry.

In order to successfully implement this startup, several conditions need to be met. The most critical item is what the under voltage lockout (UVLO) of the control circuitry is. Obviously, if the UVLO is set significantly higher than the JFET threshold, there will be a problem. In this design an UCC38C41 with a UVLO of 7.0 volts is used.

The next consideration is the impedance of the control circuitry when not powered, the JFET and MOSFET V_DS impedances with respect to the input voltage, and their influence on the steady state MOSFET V_DS. This may seem complicated, but a straightforward method is to measure the cascode MOSFET V_DS vs. V_in with the Gate disabled and compare against the controller UVLO. If there is enough “head room” the approach is viable. R3 in the circuit can also be varied to influence the startup voltage.

For verification, V_in is stepped to 200V, and Figure 2 catches when the supply begins to turn on, which is at 50 Volts.

4 Performance

Figure 3 is the efficiency of the converter at 35W and 55W across the entire input range (200 to 1000 Volts). The
power level is varied by changing the load on the higher current +12 Volt output, while the +5V output is fixed at 1.25 Watt and -12V output at 8 Watt. The switching frequency is 74 kHz. The efficiency for both power levels is greater than 85% at low line, while dropping in the 81% to 82% at high line.

5 Load and Line Regulation

The high current +12V output is regulated by a TL431 using a CNY17F opto-coupler to maintain isolation between the primary and secondary side. Graphing the +12V output voltage from the data that generated the efficiency chart in Figure 3, the line regulation is measured at 0.09%, per given power level, and a 0.08% delta in output voltage variance between the two load values.

6 Output Ripple

In flyback supplies it is the designer decision on whether to use LC filters on the output. In this case, LC filters were not used in the initial design. The measured 200 mV pk to pk of output ripple on the Opto regulated +12 V output (3 Amp) is shown in Figure 5. As this equates to a ripple percent of 1.67%, and should be acceptable in most ripple requirements, LC filters were not added in subsequent board revisions.

7 Transformer

The flyback transformer (coupled inductor) in this design uses an EPCOS gapped pot core (B65813J160A87). The windings for the primary are 46 Turns of 25 AWG. The secondary’s are +12V (4 Turns 18 AWG), -12V (4 Turns 22 AWG), +5V (2 Turns 22 AWG), and the +12V auxiliary winding (3.5 Turns 22 AWG).

In order to minimize leakage inductance, the first 23 turns of the primarily are wound on to the bobbin, and then the secondary windings are added in a single layer across bobbin. The final 23 turns for the primary are then added.

There are many approaches in implementing a magnetic design, so feel free to experiment.
8 Summary

This application serves to show that a JFET utilized in a cascode configuration can not only deliver high efficiency power conversion, but it also can simply the startup circuity, and thus reduce part count, board space and all the corresponding costs that are associated.

References

Depletion-mode SiC VJFET Simplifies High Voltage SMPS, PCIM 2012, Nigel Springett and Jeff Casady

Filter Inductor and Flyback Transformer Design for Switching Power Supplies, Lloyd Dixon (Unitrode Design Seminar, 1991)