Description

United Silicon Carbide, Inc offers the high-performance G3 SiC normally-on JFET transistors. This series exhibits ultra-low on resistance ($R_{\text{DS(on)}}$) and gate charge (Q_G) allowing for low conduction and switching loss. The device normally-on characteristics with low $R_{\text{DS(on)}}$ at $V_{GS} = 0$ V is also ideal for current protection circuits without the need for active control, as well as for cascode operation.

Features
- Typical on-resistance $R_{\text{DS(on),typ}}$ of 25mΩ
- Voltage controlled
- Maximum operating temperature of 175°C
- Extremely fast switching not dependent on temperature
- Low gate charge
- Low intrinsic capacitance
- RoHS compliant

Typical Applications
- Over current protection circuits
- DC-AC inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating

Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-source voltage</td>
<td>V_{DS}</td>
<td>DC</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Gate-source voltage</td>
<td>V_{GS}</td>
<td>AC (1)</td>
<td>-20 to +20</td>
<td>V</td>
</tr>
<tr>
<td>Continuous drain current</td>
<td>I_D</td>
<td>$T_C = 25°C$</td>
<td>85</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_C = 100°C$</td>
<td>62</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed drain current</td>
<td>I_{DM}</td>
<td>$T_C = 25°C$</td>
<td>250</td>
<td>A</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_{tot}</td>
<td>$T_C=25°C$</td>
<td>441</td>
<td>W</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>$T_{J,max}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Operating and storage temperature</td>
<td>T_J, T_{STG}</td>
<td>-55 to 175</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Max. lead temperature for soldering, 1/8” from case for 5 seconds</td>
<td>T_L</td>
<td></td>
<td>250</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) +20V AC rating applies for turn-on pulses <200ns applied with external $R_G > 1Ω$.
(2) Limited by $T_{J,max}$
(3) Pulse width t_p limited by $T_{J,max}$

For more information go to www.unitedsic.com.
Electrical Characteristics (T_j = +25°C unless otherwise specified)

Typical Performance - Static

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-source breakdown voltage</td>
<td>BV<sub>DS</sub></td>
<td>V<sub>GS</sub>= - 20V, I<sub>D</sub>=1mA</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Total drain leakage current</td>
<td>I<sub>D</sub></td>
<td>V<sub>DS</sub> = 650V, V<sub>GS</sub> = -20V, T<sub>j</sub> = 25°C</td>
<td>10</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>DS</sub> = 650V, V<sub>GS</sub> = -20V, T<sub>j</sub> = 175°C</td>
<td>60</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>GS</sub> = -20V, T<sub>j</sub> = 25°C</td>
<td>40</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>GS</sub> = -20V, T<sub>j</sub> = 175°C</td>
<td>10</td>
<td>μA</td>
</tr>
<tr>
<td>Total gate leakage current</td>
<td>I<sub>G</sub></td>
<td>V<sub>GS</sub> = -20V, T<sub>j</sub> = 25°C</td>
<td>100</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>GS</sub> = -20V, T<sub>j</sub> = 175°C</td>
<td>38</td>
<td>μA</td>
</tr>
<tr>
<td>Drain-source on-resistance</td>
<td>R<sub>DS(on)</sub></td>
<td>V<sub>GS</sub> = 2V, I<sub>D</sub> = 20A, T<sub>j</sub> = 25°C</td>
<td>22</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>GS</sub> = 0V, I<sub>D</sub> = 20A, T<sub>j</sub> = 25°C</td>
<td>25</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>GS</sub> = 2V, I<sub>D</sub> = 20A, T<sub>j</sub> = 175°C</td>
<td>33</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>GS</sub> = 0V, I<sub>D</sub> = 20A, T<sub>j</sub> = 175°C</td>
<td>38</td>
<td>mΩ</td>
</tr>
<tr>
<td>Gate threshold voltage</td>
<td>V<sub>G(th)</sub></td>
<td>V<sub>DS</sub> = 5V, I<sub>D</sub> = 70mA</td>
<td>-14</td>
<td>V</td>
</tr>
<tr>
<td>Gate resistance</td>
<td>R<sub>G</sub></td>
<td>f = 1MHz, open drain</td>
<td>2.5</td>
<td>Ω</td>
</tr>
</tbody>
</table>
Typical Performance - Dynamic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>symbol</th>
<th>Test Conditions</th>
<th>Value (Min</th>
<th>Typ</th>
<th>Max)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input capacitance</td>
<td>C_{iss}</td>
<td>$V_{DS} = 100V$, $V_{GS} = -20V$</td>
<td>2360</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>C_{oss}</td>
<td>$V_{DS} = 0V$ to $400V$, $V_{GS} = -20V$</td>
<td>290</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>$C_{oss(er)}$</td>
<td>$V_{DS} = 0V$, $f = 100kHz$</td>
<td>282</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Effective output capacitance, energy related</td>
<td>$C_{oss(er)}$</td>
<td>$V_{DS} = 400V$, $I_D = 60A$, $V_{GS} = -18V$ to $0V$</td>
<td>210</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Total gate charge</td>
<td>Q_g</td>
<td></td>
<td>240</td>
<td></td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Gate-drain charge</td>
<td>Q_{GD}</td>
<td></td>
<td>134</td>
<td></td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Gate-source charge</td>
<td>Q_{GS}</td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>$t_{d(on)}$</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td>t_r</td>
<td>$V_{DS} = 400V$, $I_D = 60A$, $V_{GS} = -18V$ to $0V$</td>
<td>64</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>$t_{d(off)}$</td>
<td>$R_{G,EXT} = 1\Omega$, Inductive Load, FWD: UJ3D06530TS $T_J = 25°C$</td>
<td>43</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Fall time</td>
<td>t_f</td>
<td></td>
<td>44</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Turn-on energy</td>
<td>E_{ON}</td>
<td>$V_{DS} = 400V$, $I_D = 60A$, $V_{GS} = -18V$ to $0V$, $R_{G,EXT} = 1\Omega$, Inductive Load, FWD: UJ3D06530TS $T_J = 25°C$</td>
<td>740</td>
<td></td>
<td></td>
<td>μJ</td>
</tr>
<tr>
<td>Turn-off energy</td>
<td>E_{OFF}</td>
<td></td>
<td>818</td>
<td></td>
<td></td>
<td>μJ</td>
</tr>
<tr>
<td>Total switching energy</td>
<td>E_{TOTAL}</td>
<td></td>
<td>1558</td>
<td></td>
<td></td>
<td>μJ</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>symbol</th>
<th>Test Conditions</th>
<th>Value (Min</th>
<th>Typ</th>
<th>Max)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance, junction-to-case</td>
<td>R_{JIC}</td>
<td>$V_{DS} = 400V$, $I_D = 60A$, $V_{GS} = -18V$ to $0V$, $R_{G,EXT} = 1\Omega$, Inductive Load, FWD: UJ3D06530TS $T_J = 25°C$</td>
<td>0.26</td>
<td>0.34</td>
<td></td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Rev. B, December 2018
Typical Performance Diagrams

Figure 1 Typical output characteristics
* at $T_J = -55^\circ C$

Figure 2 Typical output characteristics
* at $T_J = 25^\circ C$

Figure 3 Typical output characteristics
* at $T_J = 175^\circ C$

Figure 4 Typical drain-source leakage
* at $V_{GS} = -20V$
Figure 5 Typical capacitances at 100kHz and $V_{gs} = -20V$

Figure 6 Typical transfer characteristics at $V_{ds} = 5V$

Figure 7 Normalized on-resistance vs. temperature at $V_{gs} = 0V$ and $I_D = 20A$

Figure 8 Typical drain-source on-resistance at $V_{gs} = 0V$
Figure 9 Threshold voltage vs. T_j
at $V_{DS} = 5V$ and $I_D = 70mA

Figure 10 Typical stored energy in C_{oss}
at $V_{GS} = -20V

Figure 11 Total power Dissipation

Figure 12 Safe operation area
*$T_c = 25°C$, Parameter t_p
Figure 13 Typical gate leakage current at $V_{DS} = 0V$

Figure 14 Typical gate forward current at $V_{DS} = 0V$

Figure 15 Maximum transient thermal impedance

Figure 16 Typical gate charge at $V_{DS} = 400V$ and $I_D = 60A$
Figure 17 Clamped inductive switching energy vs. drain current at $T_J = 150^\circ$C

Figure 18 Clamped inductive switching energy vs. gate resistor R_G

Figure 19 Clamped inductive switching energy vs. junction temperature at $I_D = 60$A
Disclaimer

United Silicon Carbide, Inc. reserves the right to change or modify any of the products and their inherent physical and technical specifications without prior notice. United Silicon Carbide, Inc. assumes no responsibility or liability for any errors or inaccuracies within.

Information on all products and contained herein is intended for description only. No license, express or implied, to any intellectual property rights is granted within this document.

United Silicon Carbide, Inc. assumes no liability whatsoever relating to the choice, selection or use of the United Silicon Carbide, Inc. products and services described herein.