

United Silicon Carbide, Inc. Product Qualification Report

Discrete D2PAK-7L Side-By-Side Cascode Devices

Included Products:

D2PAK-7L

UF3SC065030B7S

UF3SC0650400B7S

UF3SC120040B7S

This report summarizes the qualification results for the 650V and 1200V UF3C Discrete SiC Stacked Cascodes in D2PAK-7L (TO-263-7L) plastic packages.

The environmental stress tests listed below are performed with pre-stress and poststress electrical tests. Reviewing the electrical results for new failures and any significant shift in performance satisfies the qualification requirements.

Reliability Stress Test Summary

Test Name	MSL 3 Precon	Test Standard	# Samples x # Lots	Failures
MSL3 Pre Conditioning		JESD22-A113D T=60°C, RH=60%, 40hrs + 3x IR reflow	77 pcs per lot, 3 lots per test, 4 tests	0/924
High Temperature Reverse Bias (HTRB)		MIL-STD-750-1 M1038 Method A (1000 Hours) T _J =175°C, V=80% V _{max}	77 pcs per lot x 3 lots	0/231
High Temperature Gate Bias (HTGB)		JESD22 A-108 (1000 Hours) T _J =175°C, V=100% V _{max} (+20V), bias in one direction	77 pcs per lot x 3 lots	0/231
High Humidity, High Temperature Reverse Bias (H3TRB)	Y	JESD22-A101C (1000 Hours) $T_A=85^{\circ}C$, 85% RH, $V_{GS}=0V$, $V_{DS}=100V$	77 pcs per lot x 3 lots	0/231
Temperature Cycle (TC)	Υ	JESD22 A-104 -55°C to +150°C 2 cycles/Hr, 1000 cycles	77 pcs per lot x 3 lots	0/231
Autoclave (PCT)	Y	JESD22 A-102 121°C/ RH = 100%, 96 hours, 15psig	77 pcs per lot x 3 lots	0/231
Intermittent Operating Life	Y	MIL-STD-750 Method 1037 DTJ ≥125°C, 3000 cycles (5 minutes on/ 5 minutes off)	77 pcs per lot x 3 lots	0/231

Parametric Verification	Per Datasheet	100% FT x 3 lots	
Physical Dimensions	Per AEC-Q101 Rev D	30x1 packages	0/30
Bondline Thickness	Per Assembly Spec	10x3 lots	0/30
Die Shear	Per Assembly Spec	10x3 lots	0/30
Die Attach Voids	Per Assembly Spec	10x3 lots	0/30
Wire Pull	Per Assembly Spec	10x3 lots	0/30
Wedge Shear	Per Assembly Spec	10x3 lots	0/30
CSAM	Per Assembly Spec	60x3 lots	0/180
Lead Integrity Test	Per AEC-Q101 Rev D	30x1 lots	0/30
Solderability Test	Per AEC-Q101 Rev D	10x1 lots	0/10

Reliability Evaluation:

The FIT rate data presented below is determined according to JEDEC Standard JESD 85 and is determined from the HTRB and HTGB Burn-In sample size.

FIT = 2.608009298 failures per billion device hours

MTTF = 43771.03 years

From the equations:

$$\lambda_{hours} = \frac{X^{2}(\alpha, \nu)}{2 \times D \times H \times A_{f}}$$

$$FIT = \lambda_{hours} \times 10^{9}$$

$$MTTF_{hours} = \frac{1}{\lambda_{hours}}$$

And

$$A_f = e^{\frac{E_a}{k} \left(\frac{1}{T_{use}} - \frac{1}{T_{test}}\right)}$$

Where:

 X^2 = Chi-Squared probability function for a given Confidence Level (α) and Degree of Freedom ($\nu = 2r + 2$, where r = the number of failures in the Test Population),

D = Number of Devices in the Test Population,

H = Test Hours per Device,

A_f = Acceleration Factor from the Arrhenius equation,

 E_a = Activation Energy (eV),

T_{use} = standardized Use Temperature,

T_{test} = Temperature of Stress Test,

and

k = Boltzmann's Constant.

In our calculations, we used our HTGB and HTRB Burn-In data:

D = 231 devices for HTGB and 231 for HTRB,

H = 1000 hours for HTGB and 1000 hours of HTRB,

 $1 - \alpha = 0.6$ (60% Confidence Level)

r = 0 Failures

 $E_a = 0.7 \text{ eV}$

 $T_{use} = 55$ °C or 328 K

T_{test} = 175 °C or 448 K